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Abstract

Local projections (LPs) with external instruments have become an increasingly prominent method to

identify structural impulse responses in empirical macroeconomics. When instruments are noisy measures

of structural shocks, most estimates are subject to attenuation bias. In this paper, I propose a Bayesian two-

stage local project that is robust to noisy instruments. Additionally, the proposed method can sample the

posterior distribution of the bias term which can be used to assess the exogeneity of the instruments. I

apply this method to estimate the impulse responses to U.S. marginal income tax shocks using a medium-

sized, yearly-frequency local projection. The findings indicate that while marginal tax shocks are con-

tractionary, their effects on real activity and consumption dissipate within two years, which I attribute

to capital-labor displacement effects. Additionally, I identify the effects of monetary policy shocks using

high-frequency instruments and show that the instruments adopted by the literature are noisy and the

estimated effects of monetary policy are larger once we account for it.
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1 Introduction

Since the seminal work of Sims (1980), structural vector autoregressions (SVARs) have been the cornerstone

for empirical analysis of macroeconomic fluctuations. Estimating the dynamic responses of outcomes such

as output levels, inflation, and unemployment to structural shocks is the primary method macroeconomists

use for causal inference. Jordà (2005) proposed Local Projections (LP) as an alternative approach to estimate

impulse responses (IRs) by directly projecting future values of outcomes onto time series of structural

shocks. This approach has been praised for its robustness to model misspecification compared to SVARs,

though it comes with reduced estimation efficiency (Stock and Watson (2018), Plagborg-Møller and Wolf

(2021) and Li et al. (2022)). Notably, LPs remain valid even under non-invertibility, that is, when there is no

possible VAR representation such as in many dynamic stochastic general equilibrium models Sims (2002)

and Sims (2012).

In many applications, direct observations of structural shocks are unavailable, requiring the use of

proxies to identify structural impulse responses (Jordà et al. (2015)). For identification to be successful,

two key assumptions must be satisfied: (1) the instrument must be orthogonal to all other shocks, both

contemporaneously and at all leads and lags, and (2) the instrument must be strongly correlated with the

structural shock. The validity of these assumptions depends on both the choice of instrument and the

model specification.

One often overlooked aspect of identification is the possibility instruments are contaminated by noise

or measurement error. In this case, the instrument fails to meet the exclusion restrictions in one stage local

projections 1, even if the instrument is uncorrelated with other structural shocks. Specifically, when prox-

ies are noisy measures of structural shocks, the estimated impulse responses are subject to an attenuation

bias proportional to the variance of the noise component. In the limit case, it will fail to satisfy the rel-

evance condition, leading to weak instrument problems. Some previous works have addressed this issue

by proposing two-stage estimators that are robust to measurement error, such as Stock and Watson (2012),

Jordà et al. (2015) and Stock and Watson (2018).

In this paper, I propose a Bayesian Local Projection (LP) regression in two stages, enabling the same

robust identification of structural impulse responses (IRs) in the Bayesian case. This approach is grounded

in the assumption that the data-generating process is covariance stationary and that fundamental shocks

can be retrieved from a non-invertible form of a Gaussian vector moving average (VMA). These assumptions

encompass a wide range of models, including linear univariate and multivariate time series, linear Gaussian

state-space models, and linear approximations of dynamic stochastic general equilibrium (DSGE) models.

1I mean regressions of the outcome of interest in the instrument, known as ”reduced form” regressions in the applied microeco-
nomics jargon.
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The parametric structure of LP allows for well-defined Bayesian inference on structural impulse responses.

Within this framework, I introduce a Gibbs sampler algorithm for drawing samples from the posterior

distribution of structural IRs, the first stage parameter, and the remaining nuisance parameters.

In addition to correcting for bias, my proposed sampler can generate draws from the posterior distribu-

tion of the first-stage regression parameter. While classical two-stage least squares can correct for this bias

without directly estimating the first-stage parameter, the posterior distribution provides valuable informa-

tion about the quality of the instrumental variables being used. I demonstrate in this paper that, when the

exclusion restriction holds and the instrument is in the same units as the dependent variable in the first

stage, the first-stage parameter reflects the proportion of variation in the instrument driven exclusively by

the structural shock. This allows researchers to quantify the bias introduced by single-equation regres-

sions. Furthermore, since the bias term is constrained to the unit interval, the posterior distribution offers

a way to evaluate a necessary (though not sufficient) condition for the exclusion restriction.

Additionally, my Bayesian Local Projections (LPs) offer several notable advantages. First, it addresses

serial correlation in the residuals, which, when accounted for directly in the model, enhances efficiency (See

Lusompa (2021)). This improvement helps mitigate one of the primary weaknesses of LPs compared to al-

ternative methods. Second, Bayesian LPs benefit from shrinkage, allowing for a more richly parameterized

model compared to traditional LPs. This capability enables Bayesian LPs to incorporate a broader set of

control variables, even with small sample sizes. Since instruments are often correlated with other shocks,

control variables are crucial for accurate identification. Third, concerns about weak instruments are man-

aged within the Bayesian framework, unlike classic LPs, which require alternative inferential methods. In

Bayesian inference of instrumental variable regressions, a weak instrument does not invalidate the poste-

rior sampler; instead, it reduces the rate at which data updates the posterior distribution. Using dispersed

priors over impulse responses helps ensure that credible sets accurately reflect the information deficit in

weak instrument scenarios. When instruments do not provide sufficient information for meaningful re-

sults, Bayesian LPs can incorporate prior information from economic theory. Such prior restrictions refine

inference in the presence of weak instruments (Hirano and Porter (2015), Andrews and Armstrong (2017)).

To illustrate the method, I conduct two empirical exercises. First, I apply the two-stages BLP to identify

the impulse responses of marginal income tax rates in the U.S. economy from 1948 to 2012. The instrument

is constructed from variations in average marginal tax rates driven by tax reforms and revenue acts, which

are influenced by lags in aggregate income. In this case, the exogeneity of the instrument hinges on the

model’s forecasting accuracy. To address this, I propose a medium-sized yearly-frequency Bayesian Local

Projection model with 10 variables and 4 lags. By applying shrinkage to the nuisance parameters, this

richly parameterized model is able to identify impulse responses despite the limited yearly sample size.
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Since this proposed instrument is a noisy measure of true structural tax shocks, the attenuation bias should

lies in the unit interval. Using this necessary condition, I assess the quality of instruments commonly

used in the literature. By itself, the statutory variation induced by reforms is an endogenous instrument.

When interacted with a narrative-driven selection of reforms (Romer and Romer (2009), Montiel Olea and

Plagborg-Møller (2021)) the instrument meets the necessary condition.

The results show marginal income tax shocks are contractionary, with small effects on the impact period

that builds up during the next two or three years. The effect on aggregate income is long-lasting but fades

by the third year in GDP and consumption due to capital-labor displacement effects I’m able to identify.

In the second exercise, I identify monetary policy shocks using high-frequency monetary policy sur-

prises as instruments, following the approaches of Gertler and Karadi (2015), Bauer and Swanson (2023),

and others. These instruments are derived from event studies conducted within narrow windows around

FOMC announcements. However, since fluctuations unrelated to the announcements are also captured in

these event studies, the instruments are contaminated by noise. Using my first-stage regression, I evaluate

the degree of contamination across different monetary policy instruments. The share of structural shock

variance explained by these high-frequency instruments ranges from 60% to 80%, even after explicitly

attempting to control for the noise contamination 2. According to my estimates, a monetary policy contrac-

tion that raises the Dollar-Euro exchange rate by 1 3 leads to a 0.89% reduction in industrial production,

compared to a 0.70% reduction when using the same specification in a single-stage approach.

The structure of the paper is as follows: In Section 2, I derive a framework for evaluating the likelihood

of LP models. Section 3 presents the Gibbs sampler for the posterior distribution of impulse responses.

Section 4 provides two empirical applications: first, I identify the impact of marginal income tax shocks,

and second, I identify the impact of monetary policy shocks. Finally, Section 5 concludes.

Related Literature This paper contributes to the long-standing literature that focuses on identifying

and estimating structural impulse responses in macroeconomic time-series data. Bayesian methods are

extensively utilized in this field, both for the imposition of informative priors that help to manage the

high dimensionality of the models, and for the computational techniques applicable to Bayesian posterior

sampling. Notably, methods such as Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo

(SMC) are commonly employed for their flexibility and effectiveness in handling complex model estimation

and inference. Canova (2007) provides a comprehensive textbook treatment of Bayesian methods as applied

to the case of Vector Autoregressions (VARs). Similarly, DeJong and Dave (2012) offers detailed guidance

on the computational techniques widely used in this field, including this paper.

2For example, by using measures of economic news releases as in Bauer and Swanson (2023) or teal-book forecast revisions as in
Miranda-Agrippino and Ricco (2021).

3Equivalent to a 60-90 basis point change in 1-year nominal Treasury bond yields, according to uncovered interest rate parity.
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The local projection literature, initiated by Jordà (2005), introduced an estimator for impulse responses

that remains valid under certain forms of misspecification, such as omitted control variables or incorrect

lag orders. In this framework, however, residuals tend to exhibit serial correlation, which complicates

the estimation process as the likelihood function does not have a closed-form solution, making Bayesian

approaches more challenging. Several studies have addressed this issue. Plagborg-Møller (2019) suggest

utilizing a general moving average representation of stationary time series. Alternatively, Ferreira et al.

(2023) proposes correcting the misspecified covariance matrix of the residuals using a ”sandwich” estima-

tor, a technique for misspecified Bayesian models introduced by Müller (2013). This paper builds on the

approach proposed by Plagborg-Møller (2019) approach, though the two-stage regression introduced here

is specifically designed to address the issue of noise contamination in external instruments.

2 Identification of Structural Impulse Responses with Noisy Instru-

ments

I begin by reviewing local projections and their motivation as a direct method for estimating and infer-

ring the causal effects of random, unpredictable shocks that drive business cycle fluctuations. Following

Stock and Watson (2018) and Plagborg-Møller (2019), I assume macroeconomic data can has Vector Moving

Average (VMA) representation. I demonstrate that, under additional assumptions, the likelihood of local

projection residuals is well-defined and their parameters can identify structural impulse responses.

Notation Before proceeding with the discussion I introduce some notation that will be used throughout

this paper. A vector’s subscript stands for its period. A superscripts stands for a vector’s respective entry

e.g. xkt is the k ´ th entry of the vector x at time t. The same applies to matrices. For example Ai,j is the

pi, jq-th entry of A. As is standard in the time series literature, the subscript s : t aggregates the history

between s and t in a pt` 1 ´ sq ˆK matrix i.e. xs:t “ px1
s,x

1
s`1, ...,x

1
tq

1. The researcher’s set of observations at

time t is denoted by Dt 4. Identity matrices are denoted by Ii where i is its dimension. The ”curly” epsilon

εt always denotes Gaussian white noise with unit variance, that is εt „iid N p0,1q.

The technique of writing regression models conditionally on known parameters is extensively through-

out the derivation of the sampler. Each transformation will be defined in its subsection and transformed

data is denoted by ỹ. Transformations are unique to each subsection.

4Keep in mind this is different from the information set Ωt , as the latter usually includes non-observables, such as projection
residuals and latent states, as well.
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2.1 Local Projection Estimation of Impulse Responses

Suppose researcher observes a sample of macroeconomic time seriesDN “ ty1:N u, where yt is aK-dimensional

vector. For simplicity, suppose data has been transformed so that a manner that yt is co-variance stationary

and all deterministic factors, including intercepts, trends, and seasonality have been accounted for. These

observations are potentially correlated among themselves both contemporaneously and across time. Re-

searchers and policymakers are often interested in understanding the causal impact of economic policy or

external events, such as oil supply shortages or military conflicts, in these aggregates. Once one assumes yt

is stationary, representation theorems such as Wold’s can be invoked as way to give the time series a certain

amount of structure without making explicit assumptions about its distribution. I formalize this idea in

the following assumption:

Assumption 1. Let yt be time series observations whose joint distribution is covariance stationary. It admits the

following representation:

yt “ A0ϵt `A1ϵt´1 `A2ϵt´2 ` ..., (1)

where tAlu
8
l“0 are K ˆQ, absolutely summable matrices,

ř8
l“0 |A

i,j
l | ă 8 @ i “ 1, ...,K and @ j “ 1, ...,Q, and

ϵt follows Q-dimensional Gaussian white noise with diagonal covariance matrix,

Σi,j “

$

’

’

&

’

’

%

σ2
i case i “ j

0 otherwise.
(2)

Furthermore, assume that not all Alě1 “ 0KˆQ, to exclude the trivial case where yt is white noise.

Q can be equal, larger, or smaller than K . The representation is an extension of Wold’s theorem to the

case where the researcher observes measures of the true, unknown stochastic process, but not the process

itself. The appeal of this representation is its broadness, as all linear, stationary state-space models can

be represented according to Assumption (2.1) 5. Such models includes, for example, log-linear approxi-

mations of first-order rational expectations DSGE model (Sims (2002)), VARs (when K “ Q), and dynamic

factor models (K ąQ).

One of the original motivations of local projections, as proposed by Jordà (2005), is consistency and

unbiasedness of impulse response estimates when the VMA representation is non-invertible (Q ‰ K). On

5To see this just solve the measurement equation by backwardly substituting the state-transition. Recall I’m neglecting determin-
istic and non-dynamic terms in this representation.
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an intuitive level, this allows researchers to contemplate structural shocks without a one-to-one mapping

between them and observed time series. For example, consider income tax shocks (my first application).

Income taxation has several dozen possible measures: average and marginal income tax rates at different

income levels, size of the tax base, deduction possibilities, and taxation of different income categories

such as wages and capital gains, etc. All these measures could be part of the set of observations D. The

same legislative change may perturb several of those measures simultaneously, precluding the plausibility

of orthogonal structural shocks for each measure. Defining tax shocks simply as policy changes that are

orthogonal to the remaining structural shocks as in Romer and Romer (2010) is more convincing. Tax

shocks having a different dimension than policy measures do not present a conceptual challenge to the

proposed representation (2.1).

Let ϵqt represent the particular policy or event the researcher is interested in, such as marginal income

tax shocks and monetary policy shocks as in the case of this paper. Its causal impact on aggregate outcome

k, h periods after its arrival, is commonly defined as the impulse response (3), a simple expected counter-

factual variation. The objective of local projection analysis is to estimate and conduct inference over those

impulse responses:

βkh ” Erykt`h|ϵ
q
t “ 1s ´Erykt`h|ϵ

q
t “ 0s. (3)

Now, consider the linear projection of some outcome k over the shock of interest:

ykt`h “ ρϵ
q
t `ukt`h such that pykt`h ´ βk,hϵ

q
t q K ϵ

q
t . (4)

According to (1), the projection error ukt`h is a linear combination of all shocks from t`h to the infinity

past except for ϵqt , ukt`h “
ř8
l“0α

k1

l ϵt`h. The coefficient vector αkl is the k-th line of matrix Al , except for

αkh whose q-ith entry is exactly zero. By taking conditional expectations over (4), one can verify ρ identifies

the impulse response βkh .

Surprisingly even though a general dynamic model was assumed, mean-identification of impulse re-

sponse does not require an explicit estimation of transmission channels between macroeconomic time se-

ries or consideration over its dynamic properties. The OLS estimator of ykt`h over ϵqt is an unbiased and

consistent estimator of the impulse responses. In practice, such a regression is not feasible unless obser-

vations of the structural shock of interest ϵqt are available. Identification of the impulse responses must be

carried out with an external instrument zt 6. In section (2.1.2) I will detail how to carry out this form of

6Alternatively, one can impose restrictions on the matrices Al as Plagborg-Møller (2019). However, this paper focuses on the
former

7



identification. For now, I will discuss a second issue.

In addition to the fact ϵqt is generally not observable, Bayesian inference over βkh is infeasible, as it is,

for a second reason. The projection residuals ukt`h are serially correlated through the common shock terms

ϵ
k‰q
t`h , making estimation of their covariance non-trivial. To see this, consider their autocovariance function

s “ 0,1,2, ...

γkpsq “

8
ÿ

l“0

8
ÿ

r“0

αk
1

l Σ
˚αkr (5)

Σ˚ “

$

’

’

&

’

’

%

Σ if l “ r ` s

0 otherwise.
(6)

Note from (5) that: (i) ukt`h is autocorrelated and of an arbitrarily high order; (ii) the right-hand-side

does not depend on t, so that ekt`h is covariance stationary. Those two observations imply Epukuk 1q is a

symmetric Toeplitz matrix with unique serial correlation terms equal to the sample size N ´h. Even if one

could derive a posterior sampler for such a matrix, a daunting task in itself, this posterior wouldn’t have

desirable large sample properties.

For those reasons, evaluating the likelihood through (4) is not practical. However, there is a simpler

alternative: evaluate errors of forecasting models of yt . As I show in the next section, those forecasting

errors have a known covariance structure (which is exploited to construct a filter) and the projection of

ϵ
q
t over those forecasting errors identify the impulse responses. This is the parametric equivalent of the

semi-parametric LPs. The trade-off between the parametric and semi-parametric methods is the standard

one - parametric models are more efficient when correctly specified, but less robust to distributional as-

sumptions.

2.1.1 Representation when ϵqt is known.

In this section assume the researcher observe the shock of interest ϵpt in addition to the macroeconomic time

series,DN “ ty1:N ,ϵ
q
1:N u. The goal is to conduct Bayesian inference over the impulse response, βkh . Although

this assumption is quite strong in general, this exercise is useful for multiple reasons. First, it showcases

the issues with LPs parametric representation that are tangential to the identification of βkh . Second, this

is a necessary step in the derivation for the case of ϵqt is identified with an instrument zt . Third, there are

cases where a first stage is not necessary, for example, when using a shock . In those cases, the following

posterior sampler could be used to simulate posteriors of impulse responses.
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First of all, let Ωt “ tϵsu
t
s“´8 be an information set at time t which spans the space of ϵt 7. Let the

optimal linear h-step ahead forecasts of each individual time series be given by ykt`h,t´1 “ Projpykt`h|Ωt´1q

and its forecast error ukt`h,t´1 “ ykt ´ ykt`h,t´1. The following theorem yields a parametrization of local

projections that can be used in maximum likelihood and Bayesian methods:

Theorem 1. Let yt be a stochastic process that follows (1) and let ϵqt be the structural shock series of interest. The

parameter of the projection of forecasting errors be ukt`h,t´1 over ϵqt identify the h-step ahead impulse response.

That is, let ψ be such that

ukt`h,t´1 “ ψϵ
q
t ` vkt`h,t´1 such that ϵqt K vkt`h,t´1 (7)

then, ψ “ Epykt`h|ϵ
q
t “ 1q ´Epykt`h|ϵ

q
t “ 0q.

Proof. By constructionψ “ Epukt`1,t´1|ϵ
q
t “ 1q´Epukt`1,t´1|ϵ

q
t “ 0q. One only needs to show Epukt`h,t´1|ϵ

q
t q “

Epykt`h|ϵ
q
t q. In the Gaussian case, Projpyt`h|Ωt´1q “ Epykt`h,t´1q, which, from (1), is a linear combination of

shocks ϵt within the information set Ωt´1. Since ϵqt R Ωt´1, ϵqt K yt`h,t´1. As result, Epykt`h,t´1|ϵ
q
t q “

Epyt`h,t´1q “ 0. Taking expectations conditional on ϵ
q
t over yt`h “ yt`h,t´1 ` ut`h,t´1 concludes the

proof.

At first glance, the parametrization (7) may not seem very useful, as the projection error vkt`h,t´1 is still

serially correlated for h ě 1. However, the following result establishes vkt`h,t´1 has MA(h) representation

hence usual techniques used in likelihood-based and Bayesian analysis of ARMA process can be used.

Corollary 2. Define vkt`h,t´1 as in Theorem 1. There exist φ1:h ‰ 0 such that:

vkt`h,t´1 “ ekt`h `φ1e
k
t`h´1 ` ...`φhe

k
t (8)

ekt`h „N p0,σ2
k q (9)

Proof. See Appendix.

Theorem (1) and Corollary (2) together motivate the parametric representation of LPs that I use for the

remainder of this work. They imply that if research includes enough controls such that they are able to

predict ykt to a sufficient degree, the residuals of the LP regression will have exact MA(h) representation.

Henceforth, I consider LPs of the form:

7This is not to be confused with observation set Dt .
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ykt`h “ βkhϵ
q
t `γkwt´1 ` ekt`h `φ1e

k
t`h´1 ` ...`φhe

k
t , (10)

where wt is a vector of controls rich enough such that the forecasts γkwt´1 approximate the popula-

tion projection of the target outcome variable. To formalize this notion, I make it explicit as additional

assumption:

Assumption 2. The vector of controls wt is such that γk 1wt « Projpyt`h|Ωt´1q.

About the representation (10), several remarks are in order:

1. It is valid even when Q ‰ K (yt is non-invertible). As I show in the appendix, ut`h,t´1 has a vector

moving average (VMA) representation, because it is covariance stationary. However, one can verify

et`h is not a linear transformation of ϵt . The structural shocks cannot be retrieved from et`h.

2. Note that a univariate parametrization for vkt`h,t´1 can be achieved though yt is multivariate. This

is indicative that cross-correlations between k and j ‰ k, as well their auto-correlations, are nuisance

parameters, as first argued by Jordà (2005).

3. The fact that γkwt´1 needs to approximate Projpyt`h|Ωt´1q in order for the parametrization (10) to be

valid motivates my emphasis on usage of models with good forecasting performance, such as medium

to large size time series models, models with time-varying parameters, dynamic factor models, etc.

4. The term γkwt´1 is fairly flexible and one can interpret it as the measurement of a linear state-space

model. It follows that all the approaches cited above can be easily implemented by taking (10) as the

measurement equation.

5. Although forecasting and causal inference are fundamentally different objectives, the former is a pre-

requisite for the latter when using such parametrization of LPs. Researchers using (10) should not

dismiss a model’s forecasting performance. While this consideration may seem important only in the

likelihood and Bayesian contexts, it is well-known that an equivalent condition is required to relax

the (often strong) lag-exogeneity condition of the instrument.
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6. Under the Gaussian distributional assumption, the required approximation becomes γkwt « Epyt`h|Ωt´1q.

In that case, the validity of the parametrization only relies on accuracy of forecasts, not their precision.

For this reason, traditional model selection criteria, which typically minimize RMSE, cannot be used

in this context. For the purpose of identifying impulse response functions with LPs, all emphasis

should be put on forecast bias reduction, which suits LPs.

Inference of (10) can be done using any method that allows for moving-averaging residuals. There are

several such methods, including textbook applications of Kalman smoothing as in Hamilton (2020). In the

Bayesian case with conforming priors, Chib and Greenberg (1994) algorithm can be applied without any

modifications. We next consider the case where ϵqt is unobserved but an external instrument zt for it is

available.

2.1.2 Representation with Instruments

The procedure described above is infeasible as the shock of interest ϵqt cannot be observed. However, many

structural shocks can be traced back to concrete policy changes or events, and information about such

events is available to researchers. In my marginal income tax setting, legislative records and congressional

reports provide ample information about changes to tax policy and their motivation. In the case of mon-

etary policy, researchers exploit the fact that policy changes to interest rates must be first announced by

the Federal Open Market Committee (FOMC). In both cases, the external information provides the dates

on which shocks do not arrive and a dummy variable can be constructed to capture this movement. In

practice, proxies are constructed to capture as much of the assumed exogenous variation as possible using

both narrative accounts and ”external data”, data that are not included as controls wt .

Previously, some researchers used to assume those constructed shocks stood as perfect proxies of struc-

tural shocks, such as in Romer and Romer (1989). The algorithm described in the last session could be

used to implement such an approach by simply assuming zt “ ϵ
q
t . While economic theory can provide

good justification for why a proxy approximates the desired structural shock, it cannot ensure the proxy

captures the full extent of the structural shock variation, or do so without measurement errors. For this

reason, the assumption zt “ ϵ
q
t is too strong. Since Mertens and Ravn (2012), many researchers have in-

stead treated the proxies constructed from narrative accounts and external data as instrumental variables

/ external instruments.

Let be zt be the instrumental variable. Consider the coefficient of ỹkt`h “ ykt`h ´γ 1wt over zt :

11



δkh “
Epỹkt`hztq

Epz2
t q

(11)

δkh “ βkh
Epϵ

q
t ztq

Epz2
t q

`
Epvkt`k,t´1ztq

Epz2
t q

. (12)

The coefficient δkh does not identify βkh without additional identifying assumptions. The first set of

identifying assumptions relates to the second term on the right-hand-side:

Assumption 3. There is a instrument zt PD that it is lead and contemporaneously exogenous:

1. Epztϵ
p‰q
t q “ 0

2. Epztϵt`1:hq “ 0.

Thus, Epukt`kKtztq “ 0 for every k “ 1, ...,K .

Assumption 3 are the exogeneity conditions for instrumental variable regressions in the context of local

projections, though the lag-exogeneity condition is unnecessary. Both conditions must be met through the

construction of the instrument. Under Assumption 3 δkh simplifies to:

δkh “ βkhπ, (13)

where π “
Epϵ

q
t ztq

Epz2
t q

. That is, the projection coefficient of a suitable instrument over ykt`hKt identifies

the product of the desired impulse response times the projection coefficient of the instrument over the

unobserved structural shock. Substituting a suitable instrument zt for the shock in the algorithm described

in subsection 2.1.1 identifies βkh , but with an unknown scale. Bayesian inference of structural impulse

responses requires joint inference of both βkh and π. To do so, I normalize the impulse responses as follows:

Assumption 4. Let y1
t be the first variable in the vector yt . Its impulse response at impact-period is normalized

to one, β1
0 “ 1, such that

y1
t “ πzt `γ1

0
1wt ` e1

t . (14)

This is a real assumption and not just normalization because it requires β1
0 ‰ 0. That is, we are assuming

ϵ
q
t impulse responses are not zero for the policy variable. Note normalization does not need to be done with

respect to yqt . For example, suppose a small trivariate VAR of government revenues (k “ 1), government

spending (k “ 2), and some measure of real activity (k “ 3). We could potentially normalize β1
0 even if

when using an instrument for spending. In that case, we interpret impulse responses as changes caused by
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spending shocks that raise revenues by one unit. This makes our normalization scheme exactly the same as

that for proxy/instrumental variables VARs. One practical consequence of this feature is that one can draw

inferences with respect to ϵqt even when yqt is not available.

To perform Bayesian inference over βkh using an instrument, one needs to estimate π as well. Evaluating

equation (14) at t` h yields:

y1
t “ πzt `γ1

0
1wt ` e1

t (15)

ykt`h “ βkhπzt `γkh
1wt ` ekt`h `φk1e

k
t`h´1 ` ...`φkhe

k
t (16)

¨

˚

˝

e1
t`h

ekt`h

˛

‹

‚

„ iidN p0,Σkhq (17)

Equation (15) is the first stage. Equation (16) is the second stage. Together with the distributional

assumption (17), they form the empirical model.

First, notice, that due the exogeneity conditions, π is the only common parameter across both linear

projections. This local projection can be parametrized as a restricted reduced form instrumental variable

regression with unusual dynamic structure. This parameterization, as opposed to estimating δkh and divid-

ing by π, allows to implement priors that are approachable for weak instrument inference: (i) the model

directly identifies the impulse response βkh , allowing dispersed priors over those; (ii) the restricted reduced

form also avoids the ”divide by zero” problem that arises when the instrument is not valid, π “ 0, or close

to zero 8.

Second, notice the correlation between e1
t`h and ekt`h is not what gives rise to endogeneity in our model,

in contrast with traditional formulations of two-stage regressions. That is, even if y1
t and ykt have no shocks

in common other than the structural shock and Σkh is a diagonal matrix, the projection coefficient of ykt on

y1
t wouldn’t identify βkh unless e1

t “ 0 and ϵqt is the only structural shock responsible for y1
t variation. This

identification scheme would be akin to recursive identification.

Finally, I do not assume π ‰ 0 a priori. A weak instrument does not contradict the empirical model

(15)-(17), although it reduces the identifying variation used to update the posterior of βkh .

8See Kleibergen and Zivot (2003) for details of alternative Bayesian parametrizations of IV regressions. Notice my priors are differ
from theirs Bayesian two-stages, although both models are in restricted reduced form.
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3 Bayesian Inference

In this section I describe the posterior sampler of equations (15)-(17) parameters. The residuals with

moving average dynamics ekt , ..., e
k
t`h´1 will be treated as latent states, st`h. Let φ “ pφ1, ...,φhq1, st`h “

pekt , ..., e
k
t`h´1q1, S “ sT :pT`hq, γ “ pγ1

0 ,γ
k
h q1. To simplify notation I will also omit k and h from β and Σ. The

target posterior distribution is given by ppπ,β,γ,φ,Σ,S|Dq.

The moving average dynamics and the non-linearity of the RRF makes it difficult to derive an expression

of (15)-(17) likelihood and a direct sampler for the posterior distribution. I instead use Gibb’s sampler. The

partitioning of the parameter space and the respective conditional posteriors are

S|π,β,γ,φ,Σ,D (18)

Σ|π,β,γ,φ,S,D (19)

φ|π,β,γ,Σ,S,D (20)

β,γ|π,φ,Σ,S,D (21)

π|β,γ,φ,Σ,S,D. (22)

Now I proceed to derive each conditional posterior distribution and as briefly discuss the choice of prior

distributions.

3.0.1 Step 1: ppS|π,β,γ,φ,Σ,Dq

Given the conditionals, evaluate moving average residuals u1
t`1 “ e1

t`h and ukt`h “ ekt`h `φ1e
k
t`h´1 ` ...`

φhe
k
t . They form a bivariate restricted VMA(h) model where one of the series is white noise. Kalman

smoother provides draws from the posterior ppS|π,β,γ,φ,Σ,Dq. Assume a dispersed, conforming prior for

initial conditions, S0 „Nhp0, Iha
S
0

2
q, where aS0

2
Ñ 8. See Durbin and Koopman (2012) for details.

3.0.2 Step 2: ppΣ|π,β,γ,φ,S,Dq

Conditional on the state variables, the iid reduced form shocks can be evaluated:

e1
t`h “ y1

t`h ´πzt`h ´γ1
0wt`h (23)

ekt`h “ ykt`h ´πzt`h ´γkhwt ´ ρ1e
k
t`h´1 ´ ...´ ρhe

k
t (24)
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Under the assumption of Gaussian errors and with Inverse Wishart priors, the conditional posteriors

has closed form solution:

ppΣq „ IWpV0,N0q (25)

ppΣ|π,β,γ,φ,S,Dq „ IWpV0 ` e1e,N0 ` T ´ hq, (26)

where e “ pe1
h:pt`hq

, ek
h:pt`hq

q1.

3.0.3 Step 3: ppφ|π,β,γ,S,Σ,Dq

Under this conditioning set, evaluate the model as

y1
t`h ´πzt`h ´γ1

0wt`h “ e1
t`h (27)

ykt`h ´πβkhzt ´γkhwt “ φst`h ` ekt`h (28)

Since e1
t`h is conditionally observed through equation (27), I rewrite the model in a single equation

conditional on e1
t`h realization:

ykt`h ´πβkhzt ´γkhwt “ φst`h ` ekt`h|e1
t`h, (29)

where ekt`h|e1
t`h „N pµk|1,σ

2
k|1q, µk|1 “ Σ1,2Σ2,2´1 and Σk|1 “ Σ1,1 ´Σ1,2Σ2,2´1. Standardizing equation (29)

yields

pykt`h ´πβkhzt ´γkhwt ´µk|1qσ´1
k|1 “ φpst`hσ

´1
k|1 q ` ε (30)

ỹt`h “ φs̃t`h ` ε. (31)

Equation (31) is Bayesian linear regression with unit variance. Since I explicitly assumed non-invertibility,

φ is not uniquely identified in the entire parameter space. To avoid computational problems, the support

needs to be truncated to invertible region with an indicator prior distribution (32), as suggested by Chib
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and Greenberg (1994).

ppφq „N pφ0,A
´1
0 q1pφ P Rφq (32)

ppφ|π,β,γΣ,S,Dq9ppỹ1:T`h|φ,π,β,γΣ,S,D´ y1:T`hqN pφ0,A
´1
φ q1pφ P Rφq, (33)

where 1 stands for an indicator function and Rφ is the invertible region. The resulting posterior distri-

bution given by (33) is non-standard and draws must be generated using the Metropolis-Hasting algo-

rithm. I use the posterior of regression coefficients of (31) when φ P Rφ as the proposal density, N ppS̃ 1S̃ `

Aφq´1S̃ 1ỹ,pS̃ 1S̃ `Aφφ0q´1q1pφ P Rφq.

3.0.4 Step 4: ppβ,γ|π,φ,β,Σ,S,Dq.

First adjust the model to the conditional set:

y1
t`h ´πzt “ γ1

0wt`h ` e1
t`h (34)

ykt`h ´φst`h “ βkhpπztq `γkhwt ` ekt`h, (35)

equation (34) is simply a system of seemingly unrelated regressions with known covariance Σkh. Such

models have conforming, Gaussian priors given by equation (36). The posterior immediately follows from

the model standardized in matrix form

ppβ,γq „N pµ0,A
´1
µ µ0q (36)

ppβ,γ|π,φ,β,Σ,S,Dq „N ppX̃1X̃`Aµq´1pX̃1ỹ`Aµµ0qq, (37)

where

D “ pΣkh b IT´hq´1{2 (38)

ỹ “D

¨

˚

˝

y1
1:T`h

yk1:T`h

˛

‹

‚

(39)

X̃ “D

¨

˚

˝

w1:T`h 0 0

0 w1:T πz1:T ,

˛

‹

‚

(40)
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3.0.5 Step 5: ppπ|β,φ,γΣ,S,Dq

For draws of the first stage parameter π, one can use a similar device as in step 4. However, the system of

equations is not seemingly unrelated since both regressions, by assumption, share the same parameter.

y1
t`h ´γ1

0wt`h “ πzt`h ` e1
t`h (41)

ykt`h ´γhhwt ´φst`h “ πpβkhztq ` ekt`h. (42)

The system formed by equations (41) and (42) can be rewritten as single linear regression by stacking zt`h

and βkhzt :

ỹ “ Z̃π` ẽ, (43)

where,

D “ pΣkh b IT´hq´1{2 (44)

ỹ “D

¨

˚

˝

y1
1:T`h ´γ1

0wt`h

yk1:T`h ´γhhwt ´φst`h

˛

‹

‚

(45)

Z̃ “D

¨

˚

˝

z1:T`h

βkhz1:T .

˛

‹

‚

(46)

The simplicity of equation (43) is what gives almost total flexibility in the choice of prior distribution

ppπq as it is always straightforward to derive a sampler with non-conforming priors for univariate, linear

regressions. For example, priors with bounded support can be used to impose sign restrictions on this

first-stage parameter. One of the central arguments of this paper is that economic theory that justifies

instrument validity can also be used to obtain likely ranges for π. For this reason I leave π prior unspecified,

since it ultimately depends on the context of the application. Next, I discuss some common cases.

3.1 Connecting Instrument Designs to First Stage Parameters π

Consider the example of narrative identification with nothing but sign indicators:
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zt “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´1 if gpϵ
q
t `mtq ă

¯
a

0 if
¯
aď gpϵ

q
t `mtq ď ā

1 if gpϵ
q
t `mtq ą ā,

(47)

where the constructed external instrument zt is meant to identify the shock ϵt . Similar examples have

been proposed by Plagborg-Møller and Wolf (2021) and Boer and Lütkepohl (2021). Sufficiently large

shocks are connected to events recorded by the researcher, such as oil supply disruptions, war-time spend-

ing or tax reforms. If the function gpq is increasing, researchers guess the sign of the shocks correctly, on

average. The function gpq and the bands p
¯
a, āq determine how often shocks are recorded, as well as possi-

ble skewness in the recording 9. Finally, the recording might be contaminated by measurement error mt .

Under (47) it can be shown the first stage parameter is

π “
Epϵt|gpϵ

q
t `mtq ą āq ´Epϵ

q
t |gpϵ

q
t `mtq ă

¯
aq

ppgpϵ
q
t `mtq ă

¯
aq ` ppgpϵ

q
t `mtq ą āq ´ pppgpϵ

q
t `mtq ă

¯
aq ´ ppgpϵ

q
t `mtq ą āqq2

ě 0, (48)

where ppq is the joint probability density function of pϵ
q
t ,mtq. It is positive than zero since both probabil-

ities in the denominator are between 0 and 1, while the numerator is strictly positive because Epϵ
q
t |gpϵ

q
t `

mtq ě āq ą Epϵ
q
t |gpϵ

q
t `mtq ď aq. Instrument weakness in this context can be characterized by p

¯
a, āq be-

ing so wide that few shocks are recorded or measurement error being so high that Epϵ
q
t |gpϵ

q
t `mtq ě āq «

Epϵ
q
t |gpϵ

q
t `mtq ď aq.

It is also possible to find an upper bound for π. The highest performance sign-based external instrument

for ϵqt is when its sign is always recorded and done so correctly. In other words, a “ ā “ 0 and mt “ 0. In

that case, the first stage parameter simplifies to

π “ E|ϵ
q
t |,

which is strictly positive, finite under mild assumptions and proportional to ϵt in scale. For example, if

structural shock is Gaussian, |ϵ
q
t | is half-normal distributed and π9σ . Unfortunately, because E|ϵ

q
t | is not

observable, it’s not possible to impose any more restrictions on π parameter space from (47) alone. This is

a direct consequence of using instruments that are not of the same scale as ϵqt .
9For example, oil supply shocks would be mostly negative, so that ā Ñ 8.
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Recall the unit-scale normalization fixes the scale of the structural shock ϵqt as the scale of y1
t . In many

applications, instruments can be constructed to be in that same scale as well. In that case the instrument

design is given by:

zt “

$

’

’

&

’

’

%

0 if a ď gpϵ
q
t `mtq ď ā

et `mt otherwise .
(49)

That is, for small shock realizations, no narrative is recorded. When large shocks realize, the instru-

ment is constructed to capture its full effect, but can still be contaminated by measurement error mt . If

instruments are given by (49) the first stage parameter is

π “
Epϵ

q
t

2
|Gpϵ

q
t ,mtqq `Epϵ

q
tmt|Gpϵ

q
t ,mtqq

Epϵt
2
|Gpϵt ,mtqq ` 2Epϵtmt|Gpϵt ,mtqq `Epm2

t |Gpϵt ,mtqq
, (50)

where Gpϵt ,mtqq “ tgpϵt ,mtq R ra, āsu. Since instrument is more likely to record when ϵqt and mt have the

same sign, Epϵ
q
tmt|Gpϵ

q
t ,mtqq ą 0, henceforth π ă 1.

In all these examples, the sign of π is derived from the theoretical assumptions. Any choice of prior

distribution with support in the real line incorporates this information. Uniform priors in particular are

convenient as the posterior distribution of π has a closed-form solution

ppπq „Up0,π0q (51)

ppπ|β,γ,φ,Σ,Dq „Nr0,π0spZ̃
1Z̃q´1Z̃ 1ỹ, ẽ1ẽq, (52)

where N r0,π0spµ,σ2q is the Gaussian distribution truncated at r0,π0s.

4 Empirical Applications

To illustrate the Bayesian LP-IV, I use it to estimate impulse responses of economic policy in two different

applications. First application I identify marginal income tax shocks in US economy, as in Mertens and

Ravn (2012) and Mertens and Montiel Olea (2018). Second, I estimate the effect of monetary policy shocks,

also in the United States economy, as in Gertler and Karadi (2015) using the BLP-IV.
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4.1 Marginal Income Tax Shocks

A central question in the fiscal policy literature is to what extent marginal income tax rates influence

individual decisions to work, invest, and innovate. Governments that find themselves with high debt and

slow growth often raise taxes to boost tax revenue, even though raising taxes could hurt activity in the short

run. Income tax cuts are also a common counter-cyclical policy, such as the American Tax Cuts and Jobs

Acts of 2017.

The empirical literature studying US individual tax returns 10 finds that changes in marginal income

only have a modest impact on aggregate income. This is puzzling, as the empirical macro literature often

finds that average marginal tax rates (AMTR) are an important factor in explaining fluctuations in economic

activity and unemployment. Mertens and Montiel Olea (2018) made a significant contribution by bringing

individual tax return data into dynamic macro models and their evidence largely supports the findings of

macroeconomics literature — marginal tax shocks do affect activity.

In this application, I extend the analysis of AMTR shocks in several ways. To better explain the contri-

butions of the Bayesian LP-IV, let me first introduce the instruments used.

4.1.1 AMTR Instrument

The instrumental variable/external instrument zt used to capture exogenous variation in income tax policy

is given by

zt “ dt ˆ
1
Mt

Mt
ÿ

i“1

pτtpincomet´1,iq ´ τt´1pincomet´1,iqq, (53)

where incomet´1,i is payroll taxes plus individual taxable income, defined as all sources of income exclud-

ing capital gains and government transfers.11 The function τt income tax schedule at period t and dt is a

dummy variable. This function maps the declared individual taxable income to its marginal income tax

during tax year t. The quantity pincomet´1,iq ´ τt´1pincomet´1,iqq measures the marginal income tax vari-

ation caused by only changes in the schedule between periods t ´ 1 and t. This quantity was measured

for a sample of Mt individuals. The total average of those measures is the statutory variation (SV) in tax

policy which captures mechanical variation in AMTR during policy changes, discounting the effects of

fluctuations in the tax base. These measures are provided in Mertens and Montiel Olea (2018) replication

files.
10See Saez et al. (2012) for a survey.
11This is the definition most commonly used in the taxable income literature. See Piketty and Saez (2003).
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Using the SV as instrument faces two potential identification problems. First, some tax reforms may

not work as an appropriate basis to construct tax shocks if the reforms are anticipated or are done in

response to contemporaneous events. The literature has long used Romer and Romer (2009) narrative of

US tax reforms as guidance to select suitable reforms, which is done through the dt interaction term.12

Unfortunately, a consensus regarding which reforms should be included is hard to come by and as I show,

results are sensitive to this choice. For this reason, I run the models with three different instrumental

variables:13

• IV1: Includes all statutory variations. That is, dt “ 1 for all sample.

• IV2: Includes all tax shocks classified by Romer and Romer (2009) as exogenous changes.

• IV3: A subset of IV2, include only reforms classified as exogenous by Mertens and Montiel Olea

(2018).

A second identification issue comes from instruments being constructed from lagged taxable income

which is expected to be strongly correlated with other lagged shocks. Without a suitable set of controls and

an adequate number of distributed lags, the instrument violates the lag-exogeneity condition. A rich set of

controls is a challenge in this context, as income taxation has a yearly frequency, resulting in a relatively

small sample (N “ 65). It is also well known in the micro panel literature that just controlling for lags of

income does not correct these biases. 14 The reason is that several macro level shocks that are correlated

with the regression outcome ykt`h may only affect aggregate income with a delay. For example, the effect of

productivity shocks on aggregate income tend to ”build over time”. Since the contemporaneous correlation

between the two is not strong, lags of taxable income do not account for this. To address this concern I use

a relatively large set of controls together with the shrinkage priors described in the previous session. An

additional advantage of this larger model approach is that we are also able to identify a broader range of

effects.

4.1.2 Instrument Validation

To showcase the heuristic presented in section 3.1, I propose an explicit model for pzt ,ϵ
q
t q. Consider again

how the instrument is constructed: whenever the narrative, modeled through the dummy dt , identifies a

revenue act or episode of tax reform, the external instrument is exactly equal to the statutory variation. In

that case, differences between ϵqt and zt must come from either:
12They attribute four possible justifications to each tax reform: (a) response to current or future adjustments to government spend-

ing; (b) offsetting cyclical fluctuations; (c) addressing long term debt growth; (d) stimulate investment and/or long-term growth. The
literature considers the last two as candidates for tax shocks.

13See the appendix for a table detailing all the included tax reforms and revenue acts.
14See Weber (2014) for alternative exposition of this point.
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Figure 1: AMTR and Instruments
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Time series plot of U.S. Average Marginal Tax Rate (All statutory variations) and each of the three instru-
ments.

1. An endogenous reform is accidentally included in the dummy.

2. A shock arrives but is not included in the dummy

3. The statutory variation mismeasures the structural shock due sampling error.

The second source is unlikely to be important, as all exogenous changes in AMTR must do due either

through tax reforms or revenue acts — and a comprehensive list of those changes are readily available. The

third source, in contrast, is expected as both SV measures provided by Mertens and Montiel Olea (2018)

only use a sample of the population. Additionally, tax calculators used to compute τtpincomet´1q might be

imprecise. Such measurement errors muddy identification if zt were used directly but not in a two-stage

regression.15 The first source of discrepancy though violates the identification assumption. The instrument

validity hinges upon no endogenous reform being included in the dummy.

A good AMTR instrument would be subjected only to the third possibility. In that case, the relation

between shocks and instruments is given by:

15If they are assumed to be orthogonal to structural shocks and samples are large.
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zt “ ϵ
q
t dt `mt (54)

mt „N p0,σ2
mq, (55)

where mt is measurement error. Since the first stage parameter is the projection parameter of Projpϵqt |ztq.

It is easy to see that:

π “
σ2
q

σ2
q ` σ2

m
P r0,1s. (56)

If the tax instrument is constructed correctly, the first stage parameter has to be less than one and it

can be interpreted the proportion of the variance of the instrument explained by the structural shock. This

provides a necessary condition to validate an instrument based on posterior distribution of π, as probability

mass on regions π ą 1 indicates an endogenous reform was included. That is the posterior distribution of

the first-stage is identifying not just π but, in addition, the bias term in (12). Note that the sign of this bias

term has to be positive, as SV is always positively correlated with zt .

Figure 2: First Stage Parameter Distributions

Figure 3: First stage parameter posterior distribution, obtained by running the first stage with each instru-
ment separately, with all control variables (as described in the following section). Top left and right and
bottom left all have the same disperse prior distributions for π, bottom right has Up0,1q prior.

The graphs in Figure (2) show the posterior distribution of the first-stage parameter π for each of the

three different instruments given the same dispersed uniform prior over π „ Up0,10q for all the cases,

except for the bottom right where I use a Up0,1q prior. According to the posterior distributions, the prob-
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ability of π ą 1 when zt is the IV1 is 88%. The evidence points the first instrument is endogenous. Some

narrative criteria to select the right reforms are needed. The posteriors for the remaining two instruments

are close. This is expected as (56) is invariant wtih respect to the choice of reforms. While the stability of

these posteriors is evidence the instruments are valid (otherwise endogenous reforms included in IV2 but

not IV3 would shift the posterior towards 1), they do not amount to a sufficient condition, as the evidence

is still consistent with bias together with a higher level of signal-to-noise ratio.

Regardless, this analysis is still informative of the quality of the instruments. The point estimates π for

both IV2 and IV3 are approximately 0.83 and it is unlikely the sampling error on the construction of SVs

measures could amount to more.

Alternatively, since the theoretical restriction is that π P r0,1s, the more informative prior U r0,1s could

be used to eliminate the probability mass on the region π ą 1. I advise against such practice, as the role of π

in the econometric modeling is simply to give the second-stage estimates adequate scale. For this reason, as

long as posterior π has enough mass far from zero, specific values of π shouldn’t matter. That said, impulse

responses for that case were estimated and provided in the online appendix.

4.1.3 Data and Model Specification

I run two BLP-IVs for each of the three instruments. The sample has an annual frequency and covers the

period between 1948 to 2012.

I focus on two specifications. The first is a small four-variable system that includes the outcomes:

aggregate taxable income, gross domestic product, effective federal funds rate, and unemployment rate.

The policy measure is the AMTR time series. Controls include two lags of each outcome16.

The second specification is medium-scale BLP-IV that includes all of the previous four outcomes as well

as: household consumption, investment, and CPI inflation. The control variables include three lags of each

outcome and additionally three lags of each: (1) federal government debt, real stock prices, government

spending, Gertler and Karadi (2015) monetary policy surprise shocks, Ramey (2011) fiscal news shocks,

Arezki et al. (2017) international oil supply news shock and a dummy with all NBER recessions. Posteri-

ors distributions were simulated from 20,000 iterations of the Gibb’s sampler algorithm described in the

previous session.

4.1.4 Prior Distributions

Priors of the impulse responses βkh are assumed dispersed N p0,100q. The prior covariance matrix is the

usual IW´1pΣ0,3q where Σ0 is a diagonal matrix containing the variances of ykt , y
1
t . Priors over π, as de-

16All stock variables have been normalized so that IRs are in %.
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scribed above, areUp0,10q. Finally, priors over the remaining auto-regressive, controls and moving average

parameters are built assuming that each time series follows an AR y “ µ0 ` 0.85Ly ` et process, with µ0

being the long-run mean of the respective time series. The tightness of each of those priors (α0 “ 0.89) was

chosen to reduce the root mean squared errors compared to classical LP-IV.

4.1.5 Main Results

The panels of the left of Figures (4) and (5) showcase the impulse responses using IV2 and the right panels

present the results using IV1, using the medium-scale BLP-IV in both cases. Results for the model with IV3

were omitted as they don’t differ substantially from the model with IV2. All figures display the median of

the posterior IRF distribution and their 90% equal tail credible sets. My preferred estimate is given by the

model with IV2.

4.1.6 Results from Model with IV1

Across all seven outcomes, the effects in the same year of the reform implementation are small and are

only statistically different from zero for GDP (-0.63%). This finding is consistent with the micro-level

literature on marginal income tax changes who generally find small and non-significant effects on aggregate

income. These results are usually attributed to either identification issues, difficulty in finding good model

specifications, or myopic behavior by low and middle-income households, which may delay their reaction

to changes in tax incentives only after they pay their taxes at least once. My results corroborate the last

possibility.

The bulk of the effects happen between the first and third years after the tax changes. Aggregate income

drops by 1.25% in the first year, peaks at a 1.49% drop in the second year, and slowly reverts to the trend

in the long run. The high persistence of AMTR shocks on aggregate income is expected since tax reforms

permanently change household incentives. In contrast, the effects on GDP and Consumption peak in the

first year (-1.21% and -0.75% respectively) and quickly return to their trends by the third year.

The effect on consumption is puzzling, as one would expect the long-run effect on taxable income to

show up on consumption. The discrepancy between the impact on GDP and income is puzzling as well.

Both can be attributed to a substitution effect that the BLP-IV is able to capture. Since U.S. income tax

schedules incidence over wages is higher than over alternative sources of income, a raise in AMTR induces

substitution of labor for those alternatives in the aggregate level. Such an effect is consistent with all

estimates: the AMTR shock causes a large temporary increase in investment (2.11% in the first year and

3.76% in the second year) and a decrease in interest rates (-0.62% in the second year). As a result, economic
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Figure 4: BLP-IV Responses to 1 p.p. AMTR shock.

IV1 - Taxable Income IV3 - Taxable Income

IV1 - Real GDP IV3 - Real GDP

IV1 - Consumption IV3 - Consumption

IV1 - Investment IV3 - Investment

Note: Figure shows the impulse response functions to a 1 p.p. AMTR shock identified with all statutory variations (right column)
and the statutory variation of selected tax reforms (left column). The shaded areas represent 90% (light) credible bands and the solid
black line represents the median of the posterior distribution.
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Figure 5: BLP-IV Responses to 1 p.p. AMTR shock (Continuing).

IV1 - CPI (All Urban) IV3 - CPI (All Urban)

IV1 - 1-Year T-Bond Yield IV3 - 1-Year T-Bond Yield

Note: Figure shows the impulse response functions to a 1 p.p. AMTR shock identified with all statutory variations (right column)
and the statutory variation of selected tax reforms (left column). The shaded areas represent 90% (light) credible bands and the solid
black line represents the median of the posterior distribution.
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activity and consumption recover faster than taxable income. This substitution effect is also identified

in alternative specifications of BLP-IV using other labor market outcomes such as wages and labor force

participation. 17

In contrast with all the other effects discussed above, the impact of AMTR shocks on the consumer

price index (CPI) is highly persistent and only occurs in the long run. A 1% increase in AMTR causes

0.5% inflation after four years. This finding is consistent with fiscal new-Keynesian DSGE models such as

Bhattarai and Trzeciakiewicz (2017). A rise in labor income taxes reduces both aggregate supply, by raising

the cost of labor input, and aggregate demand through the income effect channel. The effect on prices is

ambiguous in the short run, but takes over in the long run because the income effect is temporary and the

supply restriction is not.

4.1.7 Results from Model with IV1

In Section 4.1.2 I argued that the posterior density of π when estimated with the first IV1 implied that

the dummy dt had to include a few endogenous reforms. To further investigate whether that is the case, I

estimate the model using IV1 to verify that the estimates are biased in the expected direction. Results are

shown in Figures (?? and 5).

Endogenous tax reforms are expected to be pro-cyclical. For this reason, the AMTR instrument that

includes all reforms may capture the effect of other shocks that positively impact economic activity, creating

a bias in the opposite direction of estimates. The estimates for all seven outcomes confirm this intuition,

although only in the case of CPI is the bias large enough to reverse the direction of the impulse responses.

4.1.8 Comparison between Small-Scale and Medium-Scale Models

To showcase the merits of including a robust set of controls, I provide estimates of the small-scale model in

Figure 6, utilizing IV3 and the same priors as the medium-scale models. The BLP-IV with dispersed priors

over the impulse response is unable to identify even the first-order effects on aggregate taxable income.

4.2 Monetary Policy Surprises

n the previous empirical application, the BLP-IV method was used to estimate impulse responses when

dealing with small samples and when the instrument faced two potential identification threats: the viola-

tion of lag exogeneity and the possible inclusion of endogenous policy variables. In this section, I address

the issue of instrumental variables contaminated by measurement errors and/or noise. To illustrate this, I

17Results for this version are available on request.
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Figure 6: BLP-IV Responses to 1 p.p. AMTR shock (Small Scale Model).

Note: Figure shows the impulse response functions to a 1 p.p. AMTR shock identified with the statutory variation of selected tax
reforms (left column). The shaded areas represent 90% (light) credible bands and the solid black line represents the median of the
posterior distribution.

revisit the analysis by Bauer and Swanson (2023) on monetary policy surprises, which attempts to identify

the causal effects of monetary policy shocks on macroeconomic outcomes such as industrial production and

inflation. The instruments in this study are constructed using a series of high-frequency event studies that

capture the impact of surprise announcements during FOMC meetings on various financial variables, such

as Euro-Dollar futures, stock indices like the SP 500, and the prices of traded securities.

Since each event study captures a single shock without cross-sectional variation across the broader econ-

omy, these studies pick up not only policy shocks but also random fluctuations in financial markets during

the event window. As a result, impulse response estimates from single-equation regressions are subject

to attenuation bias, similar to the cases discussed earlier in this paper. To address this issue, researchers

such as Stock and Watson (2012) have proposed using two-stage regressions. However, the reliance on

one-stage regressions remains widespread, likely due to the popularity of reduced-form or one-stage ap-

proaches in recent local projection studies, such as Barnichon and Brownlees (2019) and Ferreira et al.

(2023), or perhaps due to a prevailing belief that noise in high-frequency instruments is minimal or ad-

equately accounted for by instrument refinements or sign-restricted decompositions, as in Jarociński and

Karadi (2020). In this section, I show that this belief is unjustified: in my main exercise, the attenuation

parameter is significantly different from 1, leading to a substantially larger estimated impact of monetary
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policy shocks.

4.2.1 Instrument Description and Validation

To identify monetary policy shocks, I use the monetary policy surprises estimated by Bauer and Swanson

(2023), which are publicly available in their replication files. These surprises are measured by taking the

principal component of fluctuations in Euro-Dollar futures (1, 2, 3, and 4 months) within a 30-minute

window around FOMC announcements. I refer to this instrument asMPS (monetary policy surprises), and

it is normalized to match the scale of the 4-month Euro-Dollar future.

The literature has long suspected that MPS captures more than pure monetary policy shocks. Many

studies have sought to address identification issues by controlling for potential distortions in the instru-

ment, such as central bank information effects. To test whether the common refinements used in the liter-

ature adequately address all the noise in MPS, I employ a second version of the instrument. This version

is the residual from regressions that account for news releases, as suggested by Bauer and Swanson (2023),

as well as teal-book forecasts, nowcasts, and forecast revisions. The latter is often used as a proxy for the

central bank’s information set and is intended to control for information effects stemming from the central

bank’s informational advantage (Miranda-Agrippino and Ricco (2021)). I refer to this second instrument

as MPSORTH .

Figure 7 depicts the posterior distribution of the parameter π when the 4-month Euro-Dollar future is

used as the dependent variable in the first-stage equation. Three key conclusions emerge from this exercise:

first, explicitly controlling for news or central bank information effects does not fully eliminate the excess

noise in monetary policy surprises; second, the amount of noise is substantial, with an estimated 20.54%

of the variation in MPSORTH attributed to noise; and finally, even without these refinements, MPS still

satisfies the necessary condition for the exclusion restriction.

4.2.2 Data and Model Specification

I use the refined instrument MPSORTH to estimate the impact of monetary policy shocks on the U.S. econ-

omy, focusing on industrial production and CPI inflation as the outcome variables. The regressions are

conducted at a monthly frequency, controlling for 12 lags of each outcome variable, the instrument, the

unemployment rate, and 1-year Treasury bond yields. To compare the results, I run the analysis twice: first

using a one-stage approach, and then applying my two-stage Bayesian local projections.

For the impact period, I use the priors outlined in the previous section of the paper: the Minnesota prior

for the nuisance parameters, an uninformative normal prior for the impulse responses, and a uniform unit

interval prior for π. For h ą 0 periods, the impulse response from period h´ 1 serves as the prior for β.
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Figure 7: Posterior π comparisons between MPS and MPSORTH .
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Note: Figure depicts the posterior distribution of the first stage parameter π for each of the alternative instrument MPS and
MPSORTH using the Euro-Dollar Future (4 months) as the endogenous policy measure. In that case, we can interpret these as the
posterior distribution of the attenuation bias.

This interactive prior scheme is employed to smooth the results, following the approach of Barnichon and

Brownlees (2019).

4.2.3 Results

Figure 8 illustrates the effects of a monetary policy contraction, with the shock normalized to increase the

Euro-Dollar future by 1, equivalent to approximately a 90 basis point increase in the 1-year Treasury yield.

The impulse responses estimated using the two-stage regressions are larger in magnitude compared to

the one-stage results. For industrial production, the most significant difference occurs at the peak of the

effect, 16 months after the shock: the two-stage estimate shows a decline of ´0.89%, compared to ´0.70%

in the one-stage estimate. For CPI inflation, the differences are evident in both the short run and mid-term,

with the two-stage estimates being approximately 25% larger. In both cases, the bias diminishes in the

long-run estimates.

5 Concluding Remarks

I demonstrate that a parametric Local Projection (LP) model can be derived when researchers have access

to a sufficiently rich set of controls to propose a forecasting model for the outcome variables. In this

framework, structural impulse responses can be identified using instrumental variables. To estimate the

dynamic, causal effects of average marginal tax rate (AMTR) shocks and monetary policy shocks, I propose

a Gibbs sampler that simulates the posterior distributions of these structural impulse responses.

The primary advantage of the Bayesian framework—its capacity to incorporate prior information into
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Figure 8: BLP-IV Responses to 1 p.p. Euro-Dollar Future (4 Months) monetary policy shock.
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Note: Figure shows the impulse response functions to a 1 p.p. monetary policy shock identified with high-frequency monetary policy
surprises orthogonalized to new data releases as in Bauer and Swanson (2023). The blue-shaded areas represent 90% credible bands
when using the one-stage regression. The orange shaded area represents the 90% credible bands when adjusting for the attenuation
bias, using the two-stage BLP.

econometric modeling—is employed to tackle three key identification challenges. First, the typically strin-

gent lag-exogeneity condition for instrument validity can be relaxed when LPs are defined over forecasting

errors. Additionally, shrinkage priors on nuisance auto-regressive and moving-average coefficients allow

finite-sample models to incorporate a broader set of controls, thus enhancing robustness.

Second, I demonstrate that explicit assumptions about the joint distribution of the target shock and the

instrument influence the values of the attenuation bias coefficients. In many cases, posterior inference on

these coefficients can provide valuable insights into instrument quality, offering researchers an additional

robustness check. Moreover, incorporating theoretically justified prior information about these parameters,

such as their sign, can refine inference. Weak instrument concerns are mitigated by using dispersed priors

over impulse responses, which, while potentially leading to imprecise estimates, allow for informative

priors on other parameters to produce qualitatively meaningful results. These techniques are applied in

two empirical analyses to address open research questions.

First, I estimate the impulse responses of AMTR shocks using a medium-scale Bayesian Local Projection

model. The results indicate that marginal income tax shocks are contractionary, with effects on economic

activity persisting for two years, despite their longer-lasting impact on taxable income. This is attributed to

capital-labor displacement effects, which I estimate. Additionally, I validate commonly used instruments in

the tax literature, finding that statutory tax variations—without narrative-based tax reform selections—are

endogenous, while other tax instruments satisfy the necessary exclusion restrictions.

Second, I estimate the impulse responses of monetary policy shocks using a refined version of Bauer and

Swanson (2023), accounting for both the economic news channel and central bank information advantage
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in the spirit of Laumer and Santos (2024). In the first stage, I confirm that the contamination channels

suggested in the literature do not fully explain the excess noise in monetary policy surprises. I also demon-

strate that significant attenuation bias arises when monetary policy surprises are used in a single-stage

framework, underscoring the importance of employing a two-stage approach for accurate estimation.
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Jarociński, M. and P. Karadi (2020). Deconstructing monetary policy surprises—the role of information
shocks. American Economic Journal: Macroeconomics 12(2), 1–43.
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A Appendix - Proof of Corollary 2

First, notice et`h,t´1 a is covariance stationary process. I will this assertion directly, by deriving its mo-

ments. To do this, I will introduce additional notation specific of this appendix. I also re-scale the shocks

ϵt to one standard deviation, in order to simplify calculations.

Definition 3. Let A be a mˆn matrix. The term tAuα refers to a linear combination of all columns of A, that is

tAuα P spanpAq. The term α is a n-dimensional vector containing the scalars.

From the representation (1):

et`h,t´1 “ tϵt:t`huα ´ βkhϵ
q
t .

I proceed to prove its covariance stationarity by deriving its moments. First the mean:

Epet`h,t´1q “ Eptϵt:t`huα ´ βhϵ
q
t q

Epet`h,t´1q “ 0.

Now all the auto-correlation coefficients:

Epet`h,t´1e
1
t`h`s,t´1q “ Erptϵt:t`huα ´ βhϵ

q
t qptϵt:t`huα ´ βhϵ

q
t q1s

Epet`h,t´1e
1
t`h`s,t´1q “

$

’

’

&

’

’

%

tIh`suα2 ` βhβ
1
h for all |s| “ 0,1,2, ...,h´ 1.

0 otherwise

Since Ih`suα2 ` βhβ
1
h ă 8 and it does not depends on t, et`h,t´1 is covariance stationary and admits

Wold representation. That is, D CpLq “
ř8
t“1C´iL

i such that et`h,t´1 “ CpLqζt where ζt is white noise.

Since et`h,t´1 auto-correlations are zero for |s| equal or higher than h, the lag order of cpLq is exactly h.

Does et`h,t´1 following a VMA(h) process imply that each individual projection error ekt`h,t´1 has MA(h)

representation ? The answer is yes. To see this, write the projection errors as ekt`h,t´1 “ ret`h,t´1 where r is

vector of zeros with a single 1 on its k-ith entry. Since any continuous function of a covariance stationary

process is also covariance stationary, ekt`h,t´1 admits its own univariate Wold representation and the lag

order evidently cannot exceed h (or else Epet`h`s,t´1e
1
t`h,t´1q ‰ 0 for s ě h).
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